The Fundamental Problem

*
Fr

Given: model, material properties, eye/camera, lights

Generate 2-D image

3 Color Sensors (Cones)

Photoreceptor cells

Red

® Dark
Green
Veii® Dark

Blue

Rod cell Cone cell

Vitreous
body

How Cones See Spectrum

. Relative Cone Sensitivity by Wavelength (exemplary)

‘ Relative Excitation Level

Wavelength (nanometers) 700nm

»
=3
=]
=1
3




Vertex — > Primitive »| Rasterizer >

Graphics Pipeline

Clipper/ Fragment

Processor

) Vertex —» Pixels
rocessor Assembler

transformation, rasterization

originally fixed-function VLSI

pipeline, parallelism

GPUs evolve -> more powerful, programmable
vertex shaders, fragment shaders

Shaders

Vertex Shaders: programs that describe the traits
(position, colors, and so on) of a vertex. The vertex
is a point in 2D/3D space, such as the corner or
intersection of a 2D/3D shape.

Fragment Shaders: programs that deal with the
per-fragment processing such as lighting. The
fragment is a WebGL term that you can think of as
a kind of pixel and contains color, depth value,
texture coordinates, and more.

Coordinate Systems

Model: where you define object

World: place objects, define eye/camera, define
light positions, perform lighting operations

Eye: define view volume, perform lighting
operations

Canonical View Volume: clip

Screen: device specific coordinates




Want Matrix Representation

why?

(oo, (11, (rm0,))| = amemrma)| F =1
y y

Homogeneous Coordinates

* want to represent all transformations with a matrix

* P(x,y) & P(wx, wy, w),w=0

* i.e. go up 1 more dimension

* we can always go back by dividing by w
* let'susew =1

* eg. P, 4) = PG, 4,1)

Eye Coordinate System
* eyeis at origin
* eye is looking along z axis (I.h.s.?)
* Xx-axis is horizontal

e y-axis is vertical

.G

5
d




Viewing Transformation

given: lookFrom, lookAt, lookUp

gz _ lookAt —lookFrom
a | |lookAt —lookF r0m| | y

~ ;leookUp ol A

o= ez x lookUp]| N -

—~ ~ X

ey=exXez

Direct Matrix Creation

X x z X
YoI_| e ey, ey dy |y
4 ez, ez, ez, d z
! o o o 1 |L!

d = —ex«lookFrom
d,= —81- lookFrom

d, = —;\z elookFrom

Projections

Projections

AN

Perspective Parallel

- forshortening
- vanishing points

Orthographic Oblique




Perspective Projection

(Xey Yey Ze)
(r,\ 2)
X P P — >
x, = D-x,
o _ e Z
D z -
. y = Dy,
Pz

What if z. is < 0 or = 07?

Clipping

* removing parts of object that are outside field of view

* related terms:
* culling: quickly determining in/out
* bounding box: axis-aligned box containing object
* scissoring: combing clipping with scan conversion

Clipping Lines:
Cohen-Sutherland

1. compute labels for p1 & p2 \ / \
F 2. determine if total visible or |
trivial reject

3. if p1 not outside, swap p1 & p2 1001 | 1000 1100

4. find edge p1is out 0001 | 0000 | 0100

5. replace p1 with intersection 0011| 0010 | 0110
of p1-p2 and edge

if both labels 0
- 6. compute new label for p1 —trivial accept

if label(p1) n label(p2) = 0

. —trivial reject
Hardware acceleration !




Polygon Clipping:
Sutherland-Hodgman

» convex clipping region
* clip against one edge at a time

Inside : Outside
P C Output 1 2
inside | inside © ‘
inside | outside | intersection point s
outside | outside -
outside | inside intersection point; ¢ \ \ 3

Bresenham'’s Alg

DrawLine(int x1,int yl,int x2,int y2){
int x, y, dx, dy, error

dx = x2-x1

dy = y2-yl

error = 2*dy-dx

y = yl; error

for (x = x1; 1 <= x2; x++) {
SetPixel(x, y)

if (error > 0) {

y++
error = error - 2*dx « multiply error by 2*dx
} else (only care about sign)
error = error + 2*dy
} ¢ developed in 1960s
) « pen plotters

Area Averaging

 contribution proportional

to area within pixel square

Xo+0.5 yp+0.5

I’(xo,yo)zj I I(x,y)dxdy

%=0.5y,-0.5




Convex Polygons

find top vertex

go down left and right sides Ny
compute intersections with 4
scanline - \/

draw horizontal runs

on each scan line

* incremental
* amortize edge computations

Newell & Sequin

VLSI

N
7
compute “winding number” N
as you go along scanline Y
oM\ 1 A2\l 1 >
edge going up: +1 T MY <
edge going down: -1 AV AN
draw non-zero spans 0 ! d :
N
7
s
~N

Image Space

« for each pixel in image:
» determine object closest to viewer
» draw pixel appropriate color




Object Space

» for each object in scene:
* determine parts of object that are unobstructed
* draw those parts appropriate color

Techniques for Efficient
Visible Surface Algorithms

» coherence: degree to which parts of environment
or its projection exhibit local similarities

* examples of types of coherence: object, face,
edge, scan-line, area, depth, frame

VSA Z—BUﬁ(er (depth buffer)

» 2 buffers: color buffer, z-buffer
e compare during scan conversion:
« if depth of new fragment is closer

* update color buffer z-buffer

* update z-buffer cotor Buffer




VSA: Painters Alg

* sort polygons back to front

* resolve any ambiguities R
(use extents, clip if necessary)

* scan-convert polygons back to front =

BSP-Trees

Draw in priority order (ack o front)

» create tree of subspaces
(nodes store polygon,
separating plane)

* recursively traverse tree ‘ a
using lookFrom point d/ \b
* visit order: \// AN

S B

* near

VSA: Scanline Alg

e scanline at a time

* reduce dimension: 3D->2D




VSA: Warnock’s Alg

* recursively subdivide screen
* stop when “simple” or at pixel
* at pixel draw closest object

\ |

N

VSA: Weiler-Atherton

* fast sort of polygons by z

F » select “closest” polygon

use it to clip the rest
« if any poly inside clipping poly A

closer -> initial sort wrong b v
* use it as clipping poly first
» otherwise discard those inside
e draw clipping poly
VSA: Ray Casting
(Ray Tracing)

* shoot ray ray from eye

through screen into world %{%

* intersect objects with ray
» find closest intersection J‘
« do shading/lighting -

calculation '

* very floating-point intensive




Diffuse Reflection

(Lambertian Reflection)

* dull, matte surfaces
reflect light equally in all directions

* light enters object, scatters internally
* eq: plastic, paint, paper, vegetation, snow, etc

Specular Reflection

* shiny surfaces, highlights

Diffuse + Specular

I=1,, (K, cos(0)+K,-cos"())

/

[0...1]

light

cos(a) = dot(E, R)




Ambient Reflection

* modeling inter-reflection
is hard

* parts in shadow are black
(looks bad)

* approximate indirect lighting

* simplification:
use constant K,

Color

* Ku, Ki, K; depend on A, Lign depends on 4

* highlights: white for many objects (actualy, color of light)

* compute vertex normals

* average of polygons around vertex

* directly from model during tessellation
» perform lighting operation at vertex

* linearly interpolate resulting vertex color

(linear interpolation not correct)




Phong Shading

* compute vertex normals

* linearly interpolate vertex normals

(linear interpolation not correct)

» perform lighting operation per pixel

Shading Models for
Polygons

Gouraud Phong

Cook-Torrance

reflectance (Fresnel) is also a function of wavelength A

R
NN

Figure 5a. Reflectance (p) of a copper mirror
as a function of wavelength (1) and
incidence angle (6).




