
The Fundamental Problem

Given: model, material properties, eye/camera, lights

Generate 2-D image

x
y

z

3 Color Sensors (Cones)

How Cones See Spectrum

Graphics Pipeline

• transformation, rasterization
• originally fixed-function VLSI
• pipeline, parallelism
• GPUs evolve -> more powerful, programmable
• vertex shaders, fragment shaders

Vertex PixelsVertex

Processor

Clipper/

Primitive

Assembler

Rasterizer Fragment

Processor

Shaders
• Vertex Shaders: programs that describe the traits

(position, colors, and so on) of a vertex. The vertex
is a point in 2D/3D space, such as the corner or
intersection of a 2D/3D shape.

• Fragment Shaders: programs that deal with the
per-fragment processing such as lighting. The
fragment is a WebGL term that you can think of as
a kind of pixel and contains color, depth value,
texture coordinates, and more.

Coordinate Systems
• Model: where you define object

• World: place objects, define eye/camera, define
light positions, perform lighting operations

• Eye: define view volume, perform lighting
operations

• Canonical View Volume: clip

• Screen: device specific coordinates

Want Matrix Representation

why?

TM 3 TM 2 TM1()()() x
y

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= (TM 3TM 2TM1)

x
y

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= TMcombined

x
y

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Homogeneous Coordinates

• want to represent all transformations with a matrix
• P(x, y) ⇔ P(w∙x, w∙y, w), w ≠ 0

• i.e. go up 1 more dimension
• we can always go back by dividing by w
• let’s use w = 1
• eg. P(3, 4) ⇔ P(3, 4, 1)

Eye Coordinate System
• eye is at origin
• eye is looking along z axis (l.h.s.?)
• x-axis is horizontal
• y-axis is vertical

y

x

z

Viewing Transformation
given: lookFrom, lookAt, lookUp

ez! = lookAt − lookFrom
lookAt − lookFrom

ex! = ez! × lookUp
! "!!!!!!

ez! × lookUp
! "!!!!!!

ey! = ex! × ez!

y

x

z

ex

ey ez

Direct Matrix Creation
′x
′y
′z
1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

exx exy exz dx
eyx eyy eyz dy
ezx ezy ezz dz
0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

x
y
z
1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

dx = −ex! i lookFrom

dy = −ey! i lookFrom

dz = −ez! i lookFrom

Projections
Projections

Perspective Parallel

- forshortening

- vanishing points

Orthographic Oblique

Perspective Projection

yp
D

= ye
ze

D

(xp, yp, zp)

(xe, ye, ze)

Y

X

Z

xp =
D ⋅ xe
ze

yp =
D ⋅ ye
ze

What if ze is < 0 or = 0?

Clipping

• removing parts of object that are outside field of view

• related terms:
• culling: quickly determining in/out
• bounding box: axis-aligned box containing object
• scissoring: combing clipping with scan conversion

Clipping Lines:  
Cohen-Sutherland

1. compute labels for p1 & p2
2. determine if total visible or  

trivial reject
3. if p1 not outside, swap p1 & p2
4. find edge p1 is out
5. replace p1 with intersection  

of p1-p2 and edge
6. compute new label for p1

p2

p1

1000

0000

0010

1001

0001

0011

1100

0100

0110

if both labels 0
 →trivial accept

if label(p1) ⋂ label(p2) ≠ 0
 →trivial rejectHardware acceleration

Polygon Clipping:  
Sutherland-Hodgman

• convex clipping region
• clip against one edge at a time

P C Output

inside inside c

inside outside intersection point

outside outside -

outside inside intersection point; c

Inside Outside

1

2

3
4

5

Bresenham’s Alg
DrawLine(int x1,int y1,int x2,int y2){

int x, y, dx, dy, error

dx = x2-x1

dy = y2-y1
error = 2*dy-dx

y = y1;

for (x = x1; i <= x2; x++) {

SetPixel(x, y)

if (error > 0) {

y++

error = error - 2*dx

} else

error = error + 2*dy

}

}

• multiply error by 2*dx 
(only care about sign) 

• developed in 1960s
• pen plotters

error

Area Averaging

• contribution proportional 
to area within pixel square

′I (x0, y0) =
y0−0.5

y0+0.5

∫
x0−0.5

x0+0.5

∫ I(x, y)dxdy

Convex Polygons
• find top vertex

• go down left and right sides

• compute intersections with  
scanline

• draw horizontal runs  
on each scan line

• incremental
• amortize edge computations

Newell & Sequin
• VLSI

• compute “winding number” 
as you go along scanline

• edge going up: +1

• edge going down: -1

• draw non-zero spans

0 1 2 1 0

0 1 0 1 0

Image Space
• for each pixel in image:

• determine object closest to viewer
• draw pixel appropriate color

Object Space
• for each object in scene:

• determine parts of object that are unobstructed
• draw those parts appropriate color

Techniques for Efficient 
Visible Surface Algorithms

• coherence: degree to which parts of environment
or its projection exhibit local similarities

• examples of types of coherence: object, face,
edge, scan-line, area, depth, frame

VSA: Z-Buffer (depth buffer)

• 2 buffers: color buffer, z-buffer
• compare during scan conversion:

• if depth of new fragment is closer
• update color buffer
• update z-buffer Color Buffer

z-buffer

VSA: Painters Alg
• sort polygons back to front
• resolve any ambiguities  

(use extents, clip if necessary)
• scan-convert polygons back to front

BSP-Trees
Draw in priority order (back to front)
• create tree of subspaces 

(nodes store polygon, 
separating plane)

• recursively traverse tree 
using lookFrom point

• visit order:
• far
• plane
• near

a

b c

d

a

bd

ce+e-

e-

e+

VSA: Scanline Alg
• scanline at a time
• reduce dimension: 3D->2D

VSA: Warnock’s Alg
• recursively subdivide screen
• stop when “simple” or at pixel
• at pixel draw closest object

Surrounding

Intersecting

Contained

Disjoint

VSA: Weiler-Atherton
• fast sort of polygons by z
• select “closest” polygon
• use it to clip the rest
• if any poly inside clipping poly 

closer -> initial sort wrong
• use it as clipping poly first

• otherwise discard those inside
• draw clipping poly

A

B

C

D

B

A

VSA: Ray Casting 
(Ray Tracing)

• shoot ray ray from eye
through screen into world

• intersect objects with ray
• find closest intersection
• do shading/lighting

calculation

• very floating-point intensive

x
y

z

Diffuse Reflection 
(Lambertian Reflection)

• dull, matte surfaces
• reflect light equally in all directions
• light enters object, scatters internally
• eg: plastic, paint, paper, vegetation, snow, etc

Specular Reflection
• shiny surfaces, highlights

Diffuse + Specular

I = Ilight ⋅(Kd ⋅cos(θ)+ Ks ⋅cos
n (α))

[0…1]

cos(𝛼) = dot(E,R)

N

L
E !

R
!"

Ambient Reflection

• modeling inter-reflection 
is hard

• parts in shadow are black  
(looks bad)

• approximate indirect lighting
• simplification:  

 use constant Ka

[0…1]

Color
• Ka, Kd, Ks depend on 𝜆, Ilight depends on 𝜆

• highlights: white for many objects (actually, color of light)

Gouraud Shading
• compute vertex normals

• average of polygons around vertex
• directly from model during tessellation

• perform lighting operation at vertex
• linearly interpolate resulting vertex color  

(linear interpolation not correct)

Phong Shading

• compute vertex normals
• linearly interpolate vertex normals  

(linear interpolation not correct)

• perform lighting operation per pixel

Shading Models for
Polygons

Cook-Torrance
reflectance (Fresnel) is also a function of wavelength 𝜆

