
VSA: Scanline Alg
• scanline at a time 
• reduce dimension: 3D->2D

Scanline Alg
• rely on depth & scan-line coherence 
• keep list of active edges 
• sort in x 
• do visibility test at each vertex 
• can combine with z-buffer

Scanline Alg
• Advantages: 

• no memory for frame buffer 
• fast for small numbers of polygons 

(originally used in flight simulators) 

• Disadvantages 
• memory for polygon edges 
• image space



VSA: Warnock’s Alg
• recursively subdivide screen 
• stop when “simple” or at pixel 
• at pixel draw closest object

Surrounding

Intersecting

Contained

Disjoint

Warnock’s Alg
• classify polygon in list w.r.t each region

Surrounding

Intersecting

Contained

Disjoint

Warnock’s Alg
• all polygons disjoint 

-> draw background 
• 1 intersecting or contained  

-> draw background, polygon 
• polygon surrounding 

-> draw polygon 
• 1 surrounding in front of  

other polygons (any type)  
-> draw surrounding poly

Surrounding

Intersecting

Contained

Disjoint



Warnock’s Alg

• Advantages 
• relatively simple 

• Disadvantages 
• memory for polygons 
• memory for frame buffer

Surrounding

Intersecting

Contained

Disjoint

VSA: Weiler-Atherton
• subdivide at polygon boundaries 
• need powerful clipping algorithm

A

B

C

D

B

A

Weiler-Atherton
• fast sort of polygons by z 
• select “closest” polygon 
• use it to clip the rest 
• if any poly inside clipping poly 

closer -> initial sort wrong 
• use it as clipping poly first 

• otherwise discard those inside 
• draw clipping poly

A

B

C

D

B

A



Weiler-Atherton

• Advantages 
• object space 

• Disadvantages 
• memory for polygons 
• clipping

A

B

C

D

B

A

Sub-Pixel Area Subdivision  
(Antialiasing)

• continue Warnock’s Alg sub-pixel 

• Weiler-Atherton at each pixel 

• A-Buffer 
• 1 depth, 1 lighting calculation per pixel 
• use bitmap to approximate area covered

0 0

1

0 0

0 0 0

0 1 1 1

1

1 1 1

Curved Surfaces

• valiant attempts 

• z-buffer 

• recursive subdivision- stop when “flat” or “small”



VSA: Ray Casting 
(Ray Tracing)

• shoot ray ray from eye 
through screen into world 

• intersect objects with ray 
• find closest intersection 
• do shading/lighting 

calculation 

• very floating-point intensive

x
y

z

Computing Intersections
• ray: 

• sphere:

pt = o+ t ⋅
!
d

x2 + y2 + z2 = 1

(ox + t ⋅
!
dx )

2 + (oy + t ⋅
!
dy )

2 + (oz + t ⋅
!
dz )

2 −1= 0

(ox
2 + 2 ⋅ox ⋅ t ⋅

!
dx + t

2 ⋅
!
dx
2 )+ (oy

2 + 2 ⋅oy ⋅ t ⋅
!
dy + t

2 ⋅
!
dy
2 )+ (oz

2 + 2 ⋅oz ⋅ t ⋅
!
dz + t

2 ⋅
!
dz
2 )−1= 0

(
!
dx
2 +
!
dy
2 +
!
dz
2 )t 2 + 2(ox ⋅

!
dx + oy ⋅

!
dy + oz ⋅

!
dz )t + (ox

2 + oy
2 + oz

2 )−1= 0

dot(d,d)t 2 + 2dot(o,d)t + dot(o,o)−1= 0
at 2 + bt + c = 0

Ray Casting Efficiency

• 1K * 1K * 1K objects = one billion intersection calc 😞 

• improvements 
• hierarchical bounding volumes 
• spatial partitioning



Hierarchical Bounding 
Volumes

• Explicit creation of hierarchy 

• Automatic creation 
• list of objects -> tree 

• intersection ∝ surface area

Spatial Partitoning

• 2-D 

• 3-D 
• subdivide space 
• traverse grid one voxel at a time 
• uniform vs octree


