Overview of Realism

Given: model, material properties, eye/camera, lights

Question: what do I see?

Why Realism?

- better way to convey info (1 pic = 1K words)
- · spatial relationships
- simulation, design, entertainment, education, etc

Line Drawing?

- perspective
- depth cues
- · depth clipping
- color
- texture
- hidden line removal

Shaded Images

- visible surface determination
- illumination and lighting
- interpolated shading
- material properties
- better lighting models
- curved surfaces

Shaded Images

- texture
- transparency/reflection
- camera models
- object models
- dynamics

Visible Surface Determination

- two fundamental approaches:
 - image space (image precision)
 - object space (object precision)
- involve a sort

Image Space

- for each pixel in image:
 - determine object closest to viewer
 - draw pixel appropriate color

Object Space

- for each object in scene:
 - determine parts of object that are unobstructed
 - draw those parts appropriate color

Object Space Algorithms

- developed first
- developed for vector displays (hidden lines)
- high-res (4k · 4k ++)
- limited number of objects (typically polygons) (flicker, n²)
- pen plotters

Image Space Algorithms

- · low-res originally
- · can display unbounded number of objects
- potentially wider range of primitives

Techniques for Efficient Visible Surface Algorithms

- **coherence**: degree to which parts of environment or its projection exhibit local similarities
- examples of types of coherence: object, face, edge, scan-line, area, depth, frame

Bounding Boxes/Volumes

Hierarchy

• if objects don't intersect neither do sub-objects

Spatial Partitioning

Back Face Culling

VSA: Z-Buffer (depth buffer)

- 2 buffers: color buffer, z-buffer
- compare during scan conversion:
 - if depth of new fragment is closer
 - · update color buffer
 - · update z-buffer

Z-Buffer

- · Advantages:
 - wide range of primitives
 - arbitrary # of objects (deal with one at a time)
 - simple -> hardware
- Disadvantage:
 - color buffer, z-buffer memory
 - image space

VSA: Hierarchical Z-Buffer

- multiple resolutions (factor of 2)
- can deal with much larger data sets

VSA: Painters Alg

- sort polygons back to front
- resolve any ambiguities (use extents, clip if necessary)

· scan-convert polygons back to front

Painters Alg

- Advantages:
 - · relatively simple
- · Disadvantages:
 - · need frame buffer
 - · memory for polygons
 - · resolving ambiguities
 - image space

VSA: Binary Space Partitioning Trees (BSP Trees)

BSP-Trees

Draw in priority order (back to front)

- create tree of subspaces (nodes store polygon, separating plane)
- recursively traverse tree using lookFrom point

4

- visit order:
 - far
 - plane
 - near

BSP-Trees

- Advantages:
 - interactive if only eye changes
- Disadvantages:
 - high tree-building cost
 - need memory for color buffer, tree, polygons