
Drawing Lines
• frame buffer coordinates

Drawing Lines 
(scan conversion/rasterization)

• Given: (x1, y1) , (x2, y2)

• want:
• straight
• consistent density
• speed

• integer
• incremental

Drawing Lines
• incremental methods

y = mx + b

m = Δy
Δx

yi+1 = m(xi+1)+ b = m(xi + Δx)+ b
yi+1 = yi +mΔx

yi+1 = yi +m

if Δx = 1

Simple DDA
DrawLine(int x1, int y1, int x2, int y2) {

int x

double dx, dy, y, m

dx = x2-x1

dy = y2-y1

m = dy/dx

y = y1;
for (x = x1; i <= x2; x++) {

SetPixel(x, round(y))

y += m

}

}

• assumes -1<m<1 

• problems:
• floating pt
• round() 

• workaround:
• add 0.5 to y and truncate

Bresenham’s Alg 1962

DrawLine(int x1,int y1,int x2,int y2){
int x, y

double dx, dy, error
dx = x2-x1

dy = y2-y1

error = dy/dx - 0.5
y = y1;

for (x = x1; i <= x2; x++) {

SetPixel(x, y)
if (error > 0.0) {

y++
error = error - 1.0

}

error = error + dy/dx
}

}

• error = distance between 
half-way point and true line  
at next step 

• problems:
• division
• floating point 

error

Bresenham’s Alg
DrawLine(int x1,int y1,int x2,int y2){

int x, y, dx, dy, error

dx = x2-x1

dy = y2-y1

error = 2*dy-dx

y = y1;

for (x = x1; i <= x2; x++) {

SetPixel(x, y)

if (error > 0) {

y++

error = error - 2*dx

}

error = error + 2*dy
}

}

• multiply error by 2*dx 
(only care about sign) 

• developed in 1960s
• pen plotters

error

Smoothing Lines 
Anti-Aliasing

• jagged lines

• staircasing

• also known as aliasing  
(need to perform anti-aliasing)

• static bad, motion worse

Area Averaging

• contribution proportional 
to area within pixel square

′I (x0, y0) =
y0−0.5

y0+0.5

∫
x0−0.5

x0+0.5

∫ I(x, y)dxdy

Weighed Area Averaging
• filtering theory encourages use  

of weighed area averaging

• filter has higher value closer to  
centre

′I (x0, y0) =
−∞

∞

∫
−∞

∞

∫ I(x, y)F(x0 − x, y0 − y)dxdy

• overlap across 
pixel squares 

• weighed filter normalized

-0.5 0.5

1

-1 1

1

Drawing Circles

• 8-fold symmetry

• do just 1 octant and  
mirror the rest

• modified Bresenham

Polygon Rasterization

• given: list of vertices  
generate: interior pixels

Polygon Rasterization
• given: list of vertices  

generate: interior pixels

• types of polygons:
• rectangular, axis-aligned
• convex
• concave
• concave, with holes, self-intersecting

Convex Polygons
• find top vertex

• go down left and right sides

• compute intersections with  
scanline

• draw horizontal runs  
on each scan line

• incremental
• amortize edge computations

Concave
For each scanline:

• find intersection of scanline  
and edges of polygon

• sort intersections by
increasing x value

• fill in pixels between 
pairs of intersection points

can also handle holes

Issues

• slivers

• horizontal edges

• vertices with integer y coords  
 
[…)

Speeding Up Concave
• rely on edge and scanline coherence (the extent to which

image is locally the same)

• sort edges w.r.t. max y
• compute active edges (edges that intersect current

scanline) by going down sorted edge list and adding
new edges

• intersect scanline with active edges to get intersection
points

• draw visible spans
• go to next scanline (throw out old edges, get new active

edges)

Self-Intersecting?

Newell & Sequin
• VLSI

• compute “winding number” 
as you go along scanline

• edge going up: +1

• edge going down: -1

• draw non-zero spans

0 1 2 1 0

0 1 0 1 0

Newell & Sequin

• can also do holes

• hole edges labeled in 
opposite direction

0 1 0 1 0

