Drawing Lines

e frame buffer coordinates

Drawing Lines

(scan conversion/rasterization)

o Given: (X1, y1), (X2, y2) fe v e oo
S
- straight e
« consistent density =~ =Z0——————
* speed
. integer T T
* incremental __——/
Drawing Lines
* incremental methods
y=mx+b
Vi =m(x,,)+b=m(x,+Ax)+b
Yin =i HmAx

if Ax =1

Yin =Y tm

Simple DDA

DrawLine(int x1, int yl, int x2, int y2) {
int x

double dx, dy, y, m

dx = x2-x1

dy = y2-yl

m = dy/dx

y =yl

for (x = x1; i <= x2; x++) { e assumes -1<m<1
SetPixel(x, round(y)) * problems:
y +=m ¢ floating pt

} « round()

* workaround:
* add 0.5 toy and truncate

Bresenham’s Alg ..

DrawLine(int x1,int yl,int x2,int y2){

int %, y

double dx, dy, error

dx = x2-x1

dy = y2-yl

error = dy/dx - 0.5 error
y = yl;

for (x = x1; i <= x2; x++) {

SetPixel(x, y)

if (error > 0.0) {

y++ * error = distance between
error = error - 1.0 half-way point and true line
} at next step
error = error + dy/dx
* problems:
} o
* division
} « floating point

Bresenham's Alg

DrawLine(int x1,int yl,int x2,int y2)({

int x, y, dx, dy, error

dx = x2-x1

dy = y2-yl

error = 2*dy-dx

y = yl; &rror]

for (x = x1; 1 <= x2; x++) {

SetPixel(x, y)

if (error > 0) {

y++
error = error - 2*dx * multiply error by 2*dx
} (only care about sign)
error = error + 2*dy
} * developed in 1960s

} * pen plotters

Smoothing Lines
Anti-Aliasing

* jagged lines

* staircasing

* also known as aliasing
(need to perform anti-aliasing)

* static bad, motion worse

Area Averaging

 contribution proportional

to area within pixel square

Xp+0.5 yp+0.5

I'eyy)= | [10oy)dedy

X0—0.5 yo—0.5

Weighed Area Averaging

« filtering theory encourages use

of weighed area averaging

» filter has higher value closer to

centre

=

1]

-0.5 0.5 -1 1

* overlap across
pixel squares

Il(xo Vo) = J _[I(x,y)F(x, — x,y, — y)dxdy * weighed filter normalized

Drawing Circles

» 8-fold symmetry

* do just 1 octant and
mirror the rest

* modified Bresenham

Polygon Rasterization

» given: list of vertices
generate: interior pixels

» given: list of vertices
generate: interior pixels

 types of polygons:

* rectangular, axis-aligned

* convex

¢ concave

* concave, with holes, self-intersecting

Convex Polygons

* find top vertex

« go down left and right sides Ny
* compute intersections with 4
scanline - \/

* draw horizontal runs

on each scan line

* incremental
* amortize edge computations

Concave

For each scanline:

* find intersection of scanline 3

and edges of polygon {

* sort intersections by (\ v

increasing x value

« fill in pixels between /

pairs of intersection points

can also handle holes

lssues

L1\

. |
* glivers ll

* horizontal edges

* vertices with integer y coords

[.) \

Speeding Up Concave

* rely on edge and scanline coherence (the extent to which
image is locally the same)

» sort edges w.r.t. maxy

» compute active edges (edges that intersect current
scanline) by going down sorted edge list and adding
new edges

« intersect scanline with active edges to get intersection
points

» draw visible spans

* go to next scanline (throw out old edges, get new active
edges)

Self-Intersecting?

Newell & Sequin

VLSI N
7
compute “winding number” N
as you go along scanline Y
0 1 N 2\lz 1 >
edge going up: +1 4N NY Pz
edge going down: -1 N YV AN
draw non-zero spans . : o !
>
s
N

« can also do holes

* hole edges labeled in

Newell & Sequin

NY

opposite direction ANV

N\

NY

