
Graphics Hardware

Recall
CPU GPU Framebuffer

Monitor

CPU

memory

GPU

memory

Keyboard

Mouse

graphics subsystem

Making a CPU go fast
• ALU much faster than main memory (>100x)

• caches

• multiple processes

• multithreading (switch threads per clock cycle)  
needs multiple register files

• multiple cores

• SIMD

How to go fast

• pipeline 
 
 
 
 

• parallel

Pipeline
• good when you can divide work as a series of steps,  

each one after the other

• e.g.: ALU

• throughput vs latency

Parallel

• good when you can divide
work as a series of steps, 
each independent

• e.g.: multiple processes/
threads

Graphics Pipeline

Vertex PixelsVertex

Processor

Clipper/

Primitive

Assembler

Rasterizer Fragment

Processor

front end back end

Graphics Pipeline

parallel access to pixels

accelerated transformation/clipping

Vertex PixelsVertex

Processor

Clipper/

Primitive

Assembler

Rasterizer Fragment

Processor

Dividing the Frame Buffer

Interleaved Contiguous

Evolving Graphics Pipeline

parallel access to pixelsaccelerated transformation/clipping

Vertex PixelsVertex

Processor

Clipper/

Primitive

Assembler

Rasterizer Fragment

Processor

Evolving Graphics Pipeline

Vertex PixelsVertex

Processor

Clipper/

Primitive

Assembler

Rasterizer Fragment

Processor

unified shaders

SIMD
• single instruction is executed on multiple ALUs at the

same time

• can work on data in parallel (vertices/fragments)

SIMD

128 ALUs in same spacerip out parts that make CPU fast

Memory Contention/Latency
• shared memory slow

• shared memory contention

• ALUs very fast

• not enough cache

• memory starved

Multi-threading  
hides latency

• work on many groups of vertices/fragments at
same time

• when one group stalls, work on other group

• modern GPUs can have 128 threads!

Three key ideas

• use many “slimmed down cores” in parallel

• pack cores full of ALUs and share instruction streams

• avoid latency stalls by interleaving many groups of
threads

What if you’re resource
constrained?

• e.g. mobile phones

• can’t pack powerful GPU with lots of memory

Tile-based Rendering
• simpler primitives: points, lines, triangles

• frame buffer partitioned into tiles (eg 64x64) with
just enough GPU rasterization hardware for 1 tile

• transform primitives and store them, noting which
tiles they overlap (retained mode)

• work on one tile at a time

Tile-Based Rendering

