Graphics Hardware

‘Shared Texture Uit

Recall

! I
| I
Keyboard
CPU]"_‘ > GPU Framebuffer [~
t | i | Monitor

. |

| 1

| I

cPU | GPU :

Molse memory ! memory \

| I

| I

| I

Making a CPU go fast

* ALU much faster than main memory (>100x)
» caches
* multiple processes

* multithreading (switch threads per clock cycle)
needs multiple register files

* multiple cores

* SIMD

How to go fast

» pipeline —{ -

* parallel

Pipeline

* good when you can divide work as a series of steps,
each one after the other
* e.g.. ALU

* throughput vs latency

Parallel

* good when you can divide
work as a series of steps, I I
each independent

* e.g.: multiple processes/
threads

Graphics Pipeline

v Clipper/ :) Fragment ,
Vertex —»{ ertex —»| Primitve | —p| Rasterizer |__| Progessor Pixels
rocessor Assembler H
front end back end

Graphics Pipeline

Vertex Clipper/

Vertex —] —»| Primitive | —| Rasterizer |

Processor Assembler

Fragment

—> Pixels
Processor

—{ =

accelerated transformation/clipping

ELT

parallel access to pixels

Dividing the Frame Buffer

Interleaved Contiguous

Evolving Graphics Pipeline

Vert Clipper/ Fragment
Vertex —] ertex || Primitive | —| Rasterizer || 9 — Pixels
Processor Assembler Processor

accelerated transformation/clipping parallel access to pixels

SRy
SO0 E

Evolving Graphics Pipeline

v Clipper/
Vertex = ertex —»| Primitve | —| Rasterizer |_]
rocessor Assembler

Fragment

—> Pixels
Processor

L
unified shaders |:|

~ H

-

SIMD

* single instruction is executed on multiple ALUs at the
same time

» can work on data in parallel (vertices/fragments)

SIMD

CPU

rip out parts that make CPU fast

GPU

128 ALUs in same space

Memory Contention/Latency

* shared memory slow

* shared memory contention
* ALUs very fast

* not enough cache

* memory starved

®
T
[

Multi-threading
hides latency

» work on many groups of vertices/fragments at
same time

* when one group stalls, work on other group

¢ modern GPUs can have 128 threads!

thread

0 TS TS @ COMPp inst
s] B
% o mem inst
3 —_—. = mem latency
4 S —————
time

Three key ideas

* use many “slimmed down cores” in parallel
» pack cores full of ALUs and share instruction streams

* avoid latency stalls by interleaving many groups of
threads

What if you're resource
constrained?

* e.g. mobile phones

* can't pack powerful GPU with lots of memory

Tile-based Rendering

simpler primitives: points, lines, triangles

frame buffer partitioned into tiles (eg 64x64) with
just enough GPU rasterization hardware for 1 tile

transform primitives and store them, noting which
tiles they overlap (retained mode)

work on one tile at a time

Tile-Based Rendering

PowerVR GR6500

