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Types of Primitives

differentiate: 

• modeling primitives 

• graphics primitives 

• display primitives

Representing 
Curves & Surfaces

• want: 
• easy to define, modify 
• independent of coordinate system 
• continuity 
• easy to compute, transform



Possibilities
• explicit vs implicit: 
 

• parametric:

y = f (x) f (x, y, z) = 0

x = fx (t)
y = fy(t)
z = fz (t)

0 ≤ t ≤1

What function?

• polynomial (easy to compute) 

• what degree? 
• too low -> lack of flexibility 
• too high -> expensive

Cubic Polynomial
x = ax ⋅ t

3 + bx ⋅ t
2 + cx ⋅ t + dx
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y = fy(t)
z = fz (t)

0 ≤ t ≤1cubic -> points of inflection



How to Draw?

• evaluate for different values of t, 
draw lines between them 

• forward differences

x = ax ⋅ t
3 + bx ⋅ t

2 + cx ⋅ t + dx

Intuitive?

• what we want is an easy way of setting a, b, c, d 
from intuitive control points

x = ax ⋅ t
3 + bx ⋅ t

2 + cx ⋅ t + dx
x = fx (t)
y = fy(t)
z = fz (t)

0 ≤ t ≤1

Bezier Curves

• 4 control points
• go through end points 
• middle two indicate tangent 
• convex hull property 
• graphics primitive
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Bezier Blending Functions
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Recursive Construction
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B1: 1,5,8,10
B2: 10,9,7,4 

Bezier Matrix
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x = ax ⋅ t
3 + bx ⋅ t

2 + cx ⋅ t + dx



Transforming Bezier Curves

transforming Bezier control points and then 
subdividing curve into line segments 

= 
subdividing curve into line segments and then 
transforming line segments

Connecting Curves

• what happens when I want to connect several 
curves? 

• problem: continuities at boundaries  
 
C0 continuous: meet  
C1 continuous: same slope (1st derivative equal)  
C2 continuous: rate of change same (2nd derivative equal)

C2 continuous useful for machines

Splines
• piecewise polynomials that satisfy continuity 

conditions between the pieces 

• 2 types: 
• interpolating (go through control points) 
• approximating (go near control points) 

• work with 4 control points (knots) at a time



B-Spline
• does not go through knots (approximating) 
• convex hull 
• smooth C2 continuity at joints

B-Spline Matrix

Mb−spline =
1
6
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1 4 1 0
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Cardinal Spline
• interpolating 
• C1 
• takes parameter a (0⩽a⩽1)

Mcardinal =

−a 2 − a a − 2 a
2a a − 3 3− 2a −a
−a 0 a 0
0 1 0 0
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NURBS
• Nonuniform, rational b-splines 

• defined in homogeneous space 

• invariant under perspective 

• can precisely define conic sections

fx (t) =
x(t)
w(t)

fy(t) =
y(t)
w(t)

fz (t) =
z(t)
w(t)

From one to Another
Go from one representation to another via matrix multiply

Mb−spline→bezier = Mbezier
−1 ⋅Mb−spline

Mcardinal→b−spline = Mb−spline
−1 ⋅Mcardinal

...

Surfaces
• F(u,v)

• bicubic -> 16 coefficients 

• Fx(u,v) = axu3 + bxu2 + cxu + dx + exu3v + fxu2v + …  
Fy(u,v) = … 
Fz(u,v) = …



Want Control Points

Fx (u,v) = u3 u2 u 1⎡
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Display
• subdivide into polygonal mesh 
• can use u, v for texture coordinates 
• normals: cross-product of partial derivatives

!
N = dF

du
F(u,v)× dF

dv
F(u,v)

Bezier Patches



Utah Teapot
Newell 1975

Utah Teapot

Utah Teapot


