
Modeling

1

2 3

4

Types of Primitives

differentiate:

• modeling primitives

• graphics primitives

• display primitives

Representing
Curves & Surfaces

• want:
• easy to define, modify
• independent of coordinate system
• continuity
• easy to compute, transform

Possibilities
• explicit vs implicit: 
 

• parametric:

y = f (x) f (x, y, z) = 0

x = fx (t)
y = fy(t)
z = fz (t)

0 ≤ t ≤1

What function?

• polynomial (easy to compute)

• what degree?
• too low -> lack of flexibility
• too high -> expensive

Cubic Polynomial
x = ax ⋅ t

3 + bx ⋅ t
2 + cx ⋅ t + dx

x = t 3 t 2 t 1⎡
⎣⎢

⎤
⎦⎥

ax
bx
cx
dx

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥ x = fx (t)

y = fy(t)
z = fz (t)

0 ≤ t ≤1cubic -> points of inflection

How to Draw?

• evaluate for different values of t, 
draw lines between them

• forward differences

x = ax ⋅ t
3 + bx ⋅ t

2 + cx ⋅ t + dx

Intuitive?

• what we want is an easy way of setting a, b, c, d
from intuitive control points

x = ax ⋅ t
3 + bx ⋅ t

2 + cx ⋅ t + dx
x = fx (t)
y = fy(t)
z = fz (t)

0 ≤ t ≤1

Bezier Curves

• 4 control points
• go through end points
• middle two indicate tangent
• convex hull property
• graphics primitive

1

2 3

4

1

2

3

4

Bezier Blending Functions

1

2 3

4

Recursive Construction

1

2 3

4

5

6

7

8 910

B1: 1,5,8,10
B2: 10,9,7,4

Bezier Matrix

ax
bx
cx
dx

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

cp1.x
cp2.x
cp3.x
cp4.x

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

1

2 3

4

x = ax ⋅ t
3 + bx ⋅ t

2 + cx ⋅ t + dx

Transforming Bezier Curves

transforming Bezier control points and then
subdividing curve into line segments

=
subdividing curve into line segments and then
transforming line segments

Connecting Curves

• what happens when I want to connect several
curves?

• problem: continuities at boundaries  
 
C0 continuous: meet  
C1 continuous: same slope (1st derivative equal)  
C2 continuous: rate of change same (2nd derivative equal)

C2 continuous useful for machines

Splines
• piecewise polynomials that satisfy continuity

conditions between the pieces

• 2 types:
• interpolating (go through control points)
• approximating (go near control points)

• work with 4 control points (knots) at a time

B-Spline
• does not go through knots (approximating)
• convex hull
• smooth C2 continuity at joints

B-Spline Matrix

Mb−spline =
1
6

−1 3 −3 1
3 −6 3 0
−3 0 3 0
1 4 1 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Cardinal Spline
• interpolating
• C1
• takes parameter a (0⩽a⩽1)

Mcardinal =

−a 2 − a a − 2 a
2a a − 3 3− 2a −a
−a 0 a 0
0 1 0 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1

2
3

4

NURBS
• Nonuniform, rational b-splines

• defined in homogeneous space

• invariant under perspective

• can precisely define conic sections

fx (t) =
x(t)
w(t)

fy(t) =
y(t)
w(t)

fz (t) =
z(t)
w(t)

From one to Another
Go from one representation to another via matrix multiply

Mb−spline→bezier = Mbezier
−1 ⋅Mb−spline

Mcardinal→b−spline = Mb−spline
−1 ⋅Mcardinal

...

Surfaces
• F(u,v)

• bicubic -> 16 coefficients

• Fx(u,v) = axu3 + bxu2 + cxu + dx + exu3v + fxu2v + …  
Fy(u,v) = … 
Fz(u,v) = …

Want Control Points

Fx (u,v) = u3 u2 u 1⎡
⎣⎢

⎤
⎦⎥ M[] CPx[] M[]T

v3

v2

v
1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Display
• subdivide into polygonal mesh
• can use u, v for texture coordinates
• normals: cross-product of partial derivatives

!
N = dF

du
F(u,v)× dF

dv
F(u,v)

Bezier Patches

Utah Teapot
Newell 1975

Utah Teapot

Utah Teapot

