

Ray Tracing

- a generalization of ray casting
- why?
 - visible surface
 - shadows
 - reflection
 - refraction

Ray Tracing Main Topics

- intersection algorithms
- reducing intersections
- · anti-aliasing
- advanced optical effects

Intersection Algorithms

- implicit surfaces: F(x,y,z)=0 spheres, conic sections, planes, blobs, etc
- cubes, triangles, triangular meshes
- Constructive Solid Geometry (CSG)

Implicit Surfaces

- ray: $p_t = o + t \cdot \vec{d}$
- sphere: $x^2 + y^2 + z^2 1 = 0$

$$\begin{split} (o_x + t \cdot \vec{d}_x)^2 + (o_y + t \cdot \vec{d}_y)^2 + (o_z + t \cdot \vec{d}_z)^2 - 1 &= 0 \\ (o_x^2 + 2 \cdot o_x \cdot t \cdot \vec{d}_x + t^2 \cdot \vec{d}_x^2) + (o_y^2 + 2 \cdot o_y \cdot t \cdot \vec{d}_y + t^2 \cdot \vec{d}_y^2) + (o_z^2 + 2 \cdot o_z \cdot t \cdot \vec{d}_z + t^2 \cdot \vec{d}_z^2) - 1 &= 0 \\ (\vec{d}_x^2 + \vec{d}_y^2 + \vec{d}_z^2)t^2 + 2(o_x \cdot \vec{d}_x + o_y \cdot \vec{d}_y + o_z \cdot \vec{d}_z)t + (o_x^2 + o_y^2 + o_z^2) - 1 &= 0 \\ dot(d,d)t^2 + 2dot(o,d)t + dot(o,o) - 1 &= 0 \\ at^2 + bt + c &= 0 \end{split}$$

in general: find roots of equation

Constructive Solid Geometry

- Boolean set operations on simpler solids
- Union, Intersection, Difference, Negation
- ray \cap (A \cup B) = (ray \cap A) \cup (ray \cap B)
- turn hard 3D problem into simpler 1D problem

Ray Tracing Efficiency

- 1K * 1K * 1K objects = one billion intersection calc
- improvements
 - hierarchical bounding volumes
 - spatial partitioning

Hierarchical Bounding Volumes

- Explicit creation of hierarchy
- Automatic creation
 - list of objects -> tree
 - intersection \propto surface area

