Shading Models for Polygons

Gouraud Shading

- compute vertex normals
- average of polygons around vertex
- directly from model during tessellation
- perform lighting operation at vertex
- linearly interpolate resulting vertex color
 (linear interpolation not correct)

Problems with Interpolated Shading

- linear interpolation of vertex values i.e. perspective distortion

- problems with shared vertices, T-vertices
- bad average of surface normal

Problems with Interpolated Shading

- orientation dependence

Phong Shading

- compute vertex normals
- linearly interpolate vertex normals (linear interpolation not correct)
- perform lighting operation per pixel

Shading Models for Polygons

Atmospheric Attenuation/Scattering

Atmospheric Attenuation/Scattering

- some reflected light gets scattered away from line of sight
- some ambient light gets scattered into line of sight

Atmospheric Attenuation/Scattering

- transmissivity what fraction remains after unit distance
eg: let $t=0.9$-> for distance d remaining is (0.9)d
Let $t=(\text { transmissivity })^{d}$
$I_{\text {out }}=I_{\text {surface }} \cdot t+(1-t) \cdot I_{\text {background }}$

Torrance-Sparrow Reflectance Function

- Phong's $\cos ^{n}(\alpha)$ is easy to compute, not accurate
- two physicists came up with more accurate model
- surface is made up of micro-facets
- micro-facets perfectly specular

Torrance-Sparrow Reflectance Function

$$
\rho_{s}=\frac{F_{\lambda} D G}{\pi(\vec{N} \cdot \vec{E})(\vec{N} \cdot \vec{L})}
$$

$D=$ microfacet distribution function $G=$ geometrical attenuation function $F_{\lambda}=$ Fresnel function

Microfacet Distribution Fn

- Phong's $\cos ^{n}(\alpha)$ is a very simple D ($\mathrm{G} \& \mathrm{~F}=0$)

Beckman:

$$
D=\frac{1}{m^{2} \cos ^{4}(\beta)} e^{-\left\{\frac{\tan ^{2}(\beta)}{m^{2}}\right\}}
$$

Geometrical Attenuation Fn

G: self-shadowing (0...1)

$G=\min \left\{1, \frac{2(\vec{N} \cdot \vec{H})(\vec{N} \cdot \vec{E})}{(\vec{E} \cdot \vec{H})}, \frac{2(\vec{N} \cdot \vec{H})(\vec{N} \cdot \vec{L})}{(\vec{E} \cdot \vec{H})}\right\}$

Fresnel Reflectance Fn

- reflectance as a function of incidence angle θ
$F=\frac{1}{2} \frac{(g-c)^{2}}{(g+c)^{2}}\left\{1+\frac{(c(g+c)-1)^{2}}{(c(g-c)+1)^{2}}\right\}$
$c=\operatorname{dot}(\vec{E}, \vec{H})$
$g=\sqrt{n^{2}+c^{2}-1}$
$n=$ index of refraction

Cook-Torrance

reflectance (Fresnel) is also a function of wavelength λ

Figure 5a. Reflectance (ρ) of a copper mirror as a function of wavelength (λ) and as a function of wave
incidence angle (θ).

