

Gouraud Shading

- compute vertex normals
 - average of polygons around vertex
 - directly from model during tessellation
- perform lighting operation at vertex
- linearly interpolate resulting vertex color
 (linear interpolation not correct)

Problems with Interpolated Shading

• linear interpolation of vertex values i.e. perspective distortion

- problems with shared vertices, T-vertices
- bad average of surface normal

Phong Shading

- compute vertex normals
- Inearly interpolate vertex normals
 (linear interpolation not correct)
- perform lighting operation per pixel

Atmospheric Attenuation/Scattering

Atmospheric Attenuation/Scattering

- some reflected light gets scattered away from line of sight
- · some ambient light gets scattered into line of sight

Atmospheric Attenuation/Scattering

- transmissivity what fraction remains after unit distance
 - eg: let $t = 0.9 \rightarrow$ for distance *d* remaining is $(0.9)^d$

Let $t = (\text{transmissivity})^d$

 $I_{out} = I_{surface} \cdot t + (1 - t) \cdot I_{background}$

*

Torrance-Sparrow Reflectance Function

- Phong's $\cos^{n}(\alpha)$ is easy to compute, not accurate
- · two physicists came up with more accurate model
- surface is made up of micro-facets
- micro-facets perfectly specular

